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Abstract 
Problems concerning structural analysis of a one- 
dimensionally modulated structure using its 
(3 + 1)-dimensional symmetry are discussed. Simple 
modifications of the common structure-factor for- 
mula for occupational, displacive with small ampli- 
tudes and mixed modulation are obtained. The 
integral form of the structure factor known from 
literature is critically considered and an analytical 
form for harmonic displacive (not necessarily 
rectilinear) modulation has been found. Analytical 
corrections to the temperature factors have been 
introduced and generalized to cover the phase 
relationships of elliptic modulating waves. The results 
of this paper have been used to prepare a set of 
programs to refine modulated structures. 

1. Introduction 
As a result of many important works by de Wolff, 
Janssen & Janner (1981, and references therein), pro- 
gress in the symmetry description of modulated struc- 
tures by higher-dimensional crystallographic sym- 
metry has been obtained. An alternative approach, 
based on the concept of wreath product, has been 
presented by Litvin (1980) and Koptsik (1978). 

In the works by Yamamoto (1982a, b, c) a (3 + d)- 
dimensional crystallographic symmetry approach has 
been applied to the structure refinement and the struc- 
ture-factor formula (SFF) suitable for this purpose 
has been presented. 

The form of the Debye-Waller factor for modulated 
structure has been discussed in papers by Overhauser 
(1971), AXe (1980) and Adlhart (1982) and applied 
by Steurer & Adlhart (1983) in the refinement of 
a-bis(N-methylsalicylideneiminato)nickel(II). 

Although the SFF presented by Yamamoto covers 
practically all kinds of modulation, the necessity of 
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numerical integration makes application unlikely in 
many cases for which much simpler formulae would 
be sufficient. There are also some questions still open 
concerning temperature-factor corrections, especially 
in relation to the treatment proposed by Overhauser 
and Axe. As will be discussed later, the approaches 
of Yamamoto and Adlhart can lead to different 
results. 

The present work deals with structure factors of 
special as well as general (elliptical displacive waves 
included) cases of modulations. The compact analyti- 
cal expression convenient for computing in the case 
of occupational, displacive with small amplitudes, 
mixed and general types of modulation in the har- 
monic approximation will be presented and their 
limitations discussed. 

An extension of the temperature-factor corrections 
proposed by Axe is proposed for the case of general 
harmonic modulation with displacive wave. 

Our considerations are restricted to the single-q 
modulated structures described by (3 + 1)- 
dimensional crystallographic groups. 

The notation used in this paper is mostly adopted 
from original papers by de Wolff and Yamamoto in 
order to make the comparison easier. 

2. Single-q modulated structure description 

In the modulated structure the positional, occupa- 
tional and thermal parameters can be written as 
periodic functions of a continuous parameter [or 
parameters in multidimensional modulation, see 
Yamamoto (1982a) for that more general case and 
the notation] as follows: 

x~(~)=~+~,u~nen+c.c,  i=  1,2,3, 
n 

(2.1) 
y~ ' (~)  = ~ ~' y~, B ~, ~, y,,e~ +c.c, =P~', or Bij, 

n 
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where e, = exp(2~ri~),/z enumerates the symmetry- 
independent atoms and c.c means the complex conju- 
gate terms with coefficients denoted as u~_, or y_~,. 
Furthermore, the quantities with the subscripts 4 are 
related to those with the smaller subscripts by the 
following equations: 

3 

xf = qx ~ = Z qixf 
i=1 

3 

B~= B~i = E B~jqj 
j = l  

3 

B~= X qiB~qi. 
~,j=l 

(2.2) 

The modulation vector q is related to the diffraction 
pattern as follows: 

h' = hla* + h2b* + h3c* + h4q, 

h~, . . . ,  h4 are integers, where a*, b*, c* are basic- 
structure reciprocal-lattice vectors. The vector h' can 
be regarded as a projection of the four-dimensional 

4 
vector h=~,i=lhibi, bl=(a*,O),  b2=(b*,O), b3 = 
(C*, 0), b4--(q, 1). In the incommensurate case the 
correspondence between h and h' is one to one. 

In real space the atomic coordinates can be regar- 
ded as projections of vectors in four-dimensional 
space with the basic vectors a~=(a , -q~) ,  a2 = 
(b, - - q 2 ) ,  a 3  = (C,  - - q 3 ) ,  a 4  = ( 0 ,  1). The ~f component 
is a continuous parameter corresponding to the phase 
of the modulating function. In the basis introduced 
above, the action of the four-dimensional crystallo- 
graphic symmetry operation (R I r) on the positional, 
occupational and thermal parameters of a tom/ ,  can 
be defined as follows: 

4 

j = l  

4 
h -A  

Xi(X4) = E R~xJ~(x~) +r ,  
j = l  

4 
)t -A p. -g .  

B i j ( x 4 )  = E R i k B k , ( X 4  ) R j l  
k , l = l  

BX(~l[or  pX(~) ]  = B " ( ~ l [ o r  P~(2~)] 

(2.3) 

i , j - 1 , . . . , 4 .  

For these equations, the parameters of the sym- 
metry-equivalent atom )t can be generated from the 
parameters of the atom/z. It is very important that 
the crystallographic symmetry introduced in this way 
is higher than the actual three-dimensional one. 

During the structure refinement of structure-factor 
calculations it may be useful to define the action of 
the rotations on reflection indices rather than posi- 
tional or anisotropic thermal parameters as follows 

(see Rollet, 1965): 

4 

h~= ~, R],hj, i = 1 , . . . , 4  

j=l (2.4) s s s Hi = hi + h4qi, i = 1, 2, 3, 

where s counts the symmetry elements. The SFF has 
the following form: 

1 

F ( h ) =  E M'f~ ' (h ') ~ dx~'P~'(x~) 
/z,s 0 

I 3 s /1. - /x  s 
xexp - Y. HiBu(x 4 )H i 

i , j = l  

s p, - /x  s } +2~ri [h,xi(x4)+h,r,] , (2.5) 
i=1  

where /z counts the symmetry-independent atoms, 
M ~" is the multiplicity andfl" (h') is the atomic scatter- 
ing factor of the/xth atom. The relationship between 
three- and four-dimensional notations can be dis- 
cussed by the following equations: 

4 3 
s /~ -p .  s __ s /~ -p .  s E hiB~(x ) h i -  E H,Bo(x4)H~ 

i,j = 1 i,j = 1 
(2.6) 

4 3 

Z h ~ u ~ ( ~ ) =  Z H~u~(~). 
i=1  i=1 

As will be discussed below, in some cases important 
for applications (2.5) can be significantly simplified, 
because the integration can be performed analytically 
rather than numerically. However, (2.5) is suitable 
for more complicated modulations (e.g. anharmonic). 

3. Small-displacive-modulation-amplitude 
approximation 

Throughout this and the next sections the assumption 
is made that the temperature factors are not modu- 
lated, B~., = 0 for n # 0. This is not a strong restriction. 
As will be discussed later, the refinement procedure 
based on the zero-order terms B~.o partially covers 
the anomalous thermal vibrations due to structural 
modulation. 

To simplify the notation the following quantity can 
be extracted from SFF (2.5): 

W~(h) M~f~'(h ')exp{ - ~ ..~sw*us,,.u.o.,j 
i , j = l  

+2¢ri i=1 ~ [(h~2~+hp'~)+h4rl]}. (3.1) 

In addition, the new notation for satellite indices h4 
and h~ is used: h4 = m, h~ = re(s). 

If all displacive modulation amplitudes are equal 
to zero the modulation is purely occupational. Using 
the notation introduced, the SFF can be written in 
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the following form: 

F(h)= Y', W~(h)P~-m(~). (3.2) 

As pointed out by Yamamoto, this type of modulation 
leads to serious phase problems during structure 
refinement, but this problem will not be discussed 
here. 

The next simple case is the pure displacive modula- 
tion with small amplitudes. In this case the expansion 
exp (x)-'-1 + x + . . .  can be used and the SFF reads 

F(h) = E W~(h)P~ t~m(s),0 ÷ 2zri Y, " ~' H i  u i , - m ( s )  , 
s, lz i = 1 

(3.3) 

where 8m ,, is the Kronecker delta function and u ~' - 0 • i ,0  - -  

according to the assumption that the average dis- 
placement is zero. It is easy to see that the range of 
harmonics taken into account should be greater than 
or equal to that of satellite reflections. Furthermore, 
in both cases discussed above the main reflections 
are not affected by the modulation functions. Strictly, 
this is not true for the mixed displacive and occupa- 
tional modulation leading to the SFF in the form 

F(h) = E W~(h) ( P-re ( s )  ~ 
S,I a. \ 

M , ) 
+2"n'i E P~ E H, " ~ u i.-,,(~)-,, , (3.4) 

n = N  i = 1  

where N = N m a  x - m(s), M = - N m a  x for m(s) >-0 and 
N = N m a x ,  M = - N m a  x - m(s) for m(s) < 0 and N m a  x 

is the maximal range of the harmonics included (it 
is assumed that N m a x  > - I r a ( s ) [  for each satellite reflec- 
tion). However, the terms with n # 0 lead to correc- 
tions smaller than the error caused by the approxima- 
tion Jo(x)= 1 for the zero-order Bessel function (see 
next section), and can be neglected. 

4. Harmonic approximation for displacive modulation 
To analyse the harmonic approximation for dis- 
placive modulation it is convenient to change the 
parametrization of the modulating functions as 
follows: 

ufie~+c.c=a~sin[27r($~+tp~)], i = 1 , 2 , 3 ,  (4.1) 

and u :  = 0 for n ~ 1. This type of structural modula- !• i1 

tion has been discussed in the literature under addi- 
tional restrictions on the parameters a~" and ¢~. Such 
models include pure longitudinal and transverse 
modulations (see e.g. B6hm, 1975) or, more generally, 
rectilinear modulation (q~" = ¢ ~', i = 1, 2, 3). We will 
discuss the general modulation of the harmonic type 
(see van Aalst, den Hollander, Peterse & de Wolff, 
1976), taking into account its (3+l)-dimensional  
symmetry. 

Using the Anger-Jacobi generating function and 
the Graft summation theorem for Bessel functions 
the SFF (2.5) can be transformed by the following 
substitution: {3  } 
exp 2~ri ~ s Hiai sin [27r (~  + ~ ) ]  

i = 1  

3 
$ /.t - 1-I E J . ( , ) ( 2 = H , ~  ) 

i----1 n ( i ) = - - o o  

x exp [27rin(i)(2'~ + ~p~) ] 
co  

= ~ J,,[K~(h)] exp {2rrin[2~+~o~(h)]}, (4.2) 
n = - - o o  

where K~(h) and q~(h) are defined by the equation 

3 

K~(h) exp [2~ri¢~(h)] = 2~" • H~a~ exp (2~ri¢~). 
i = 1  

(4.3) 

The SFF can then be transformed to the form 

F(h)= E W~(h)P~J_~(,)[K~(h)] 
s,/x 

xexp [-27rim(s)~(h)]. (4.4) 

Although the SFF obtained has a form quite similar 
to that known from literature, all the restrictions on 
modulating parameters mentioned above have been 
removed. Furthermore, the (3 + 1)-dimensional sym- 
metry has been introduced to the formula in the form 
suitable for calculations. 

Contrary to the approximation discussed in § 3, in 
the currently discussed modulation described by the 
first-order harmonics only, an arbitrary order of satel- 
lite reflections can be observed in the diffraction pat- 
tern. The scattering amplitude F(h) contains the terms 
proportional to the Bessel functions of order equal 
to the order of the satellite reflection. This is not true 
for mixed modulation described by the following 
SFF: 

F(h)= E W~(h)E P~J_~(,)_.[K~(h)] 
$,t.t n 

xexp{-2~-i[m(s)+n]¢~(h)}. (4.5) 

In that case the satellite reflection of order m is also 
affected by the Bessel functions of order different 
from m. A similar effect of mixing the different order 
terms can also be caused by the temperature-factor 
modulation, as will be discussed in the next section. 
The range of the summation over n is limited by the 
occupational modulation harmonics range only [see 
(3.4)]. Each reflection is affected by all harmonics of 
both occupational and displacive modulating func- 
tions, but the main contribution to the structure factor 
is the harmonic of the satellite reflection order. 
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5. Modulation and temperature factors 

The modification of the temperature (Debye-Waller) 
factor due to the structural modulation has been 
discussed by Overhauser (1971), Axe (1980) and 
Adlhart (1982) from the physical point of view. A 
phenomenological description of the temperature fac- 
tors in the form of the modulating function, 
analogously to the other parameters, has been intro- 
duced by Yamamoto (1982a). 

The difficulties in the description of the thermal 
vibrations of the modulated structure are caused by 
the complicated relationships between the displacive 
wave parameters and the parameters introduced on 
the temperature factor (e.g. the mean-square fluctu- 
ations of the phases or amplitudes). 

Let us discuss the Overhauser approach. In our 
notation the corrected temperature factor has the 
form: 

Tf  = exp ,ti.t.sij, os, j - (h,~)2(~2)/2 (5.1) 
i , j=l  

where (¢2) is the mean-square phase fluctuation of 
the displacive modulating wave of the atom/z.  The 
term exp [-(h~)2(~2)/2] is known as the Overhauser 
correction. Note that (h~) 2 is the order of the satellite 
reflection squared. It is easy to see that the simplest 
way to introduce such a correction during the struc- 
ture refinement is to take the B44.o parameters as 
refined quantities [the corresponding (2.6) is not valid 
in that case]. However, as a result, the displacive 
amplitudes obtained in this way are higher and can 
be regarded as parameters not affected by the phase 
fluctuations. 

As was pointed out by Axe, the Overhauser correc- 
tion can be modified to the form exp [ - m ( m - 1 )  
x(~2)/2] ,  where m =lhgl.  In that case the resulting 
displacive amplitudes are the effective quantities, 
affected by the phase fluctuations, and they are smal- 
ler than in the previous case. This effect has been 
observed by Steurer & Adlhart (1983). Furthermore, 
it is seen that no correction is needed when only the 
first-order satellites are observed. 

In a more detailed analysis both phase and ampli- 
tude fluctuations are taken into account. As a result 
the corrections to the temperature factors contain two 
parts: the first one affects the (ordinary) B~.o terms 
and the second one is described by the modulated 
temperature factor with the amplitudes B~,2 only. The 
correction of the first type cannot be separated from 
the normal temperature factors during the structure 
refinement. In addition, both types of corrections 
contain partially both amplitude and phase fluctu- 
ations. 

To analyse the g~-dependent terms the tem- 
perature-factor modulating waves should be trans- 
formed to the form: 

B~,,,e,, + c . c =  fl~,,, cos [2"a'n(~ + ~O~)]. (5.2) 

With a similar procedure as in § 4 [see (4.2)], the 
temperature-factor part of the SFF can be written as 
follows: 

exp - . . i ~ , , , , , j c o s [ 2 " r t n ( ~ 2 + ~ ) ]  
i.j=l 

cO 

= E ImCX~(h)] exp{2'rrinm[£~+@~(h)]}, 
m = - - t 2 0  

(5.3) 

where [similar to (4.3)]: 

x~(h) exp [2~rin@~(h)] 

3 

_ H s R ~  l-I s - -  Y . . . i~ .~ , , , , , j exp(2"n ' ind /~)  (5.4) 
i , j= l  

and In (x)  is the modified Bessel function. Combining 
this result with (4.4), one can get the SFF in the form 
close to that derived by Axe (1980) and Adlhart (1982) 
under the assumption n = 2. In the pure displacive 
case the SFF has the form 

F ( h ) =  E " Ws Po exp [ - m ( s ) ~ ( h ) ]  
S,M, 

oo 

x E J-m(,)-2, ,[K~(h)]I, ,[x~(h)] 
n~--O0 

× exp{4~rin[~b~ (h) - ~ (h ) ]} .  (5.5) 

As shown in the Appendix,* our result is an extension 
of their results to cover more general phase relation- 
ships introduced in the displacive modulating func- 
tions. In addition the following relation holds: 

@~ = (q~ + ~pJ')/2 (5.6) 

so only/3~,2 terms are the refined quantities. 
In all the corrections of the temperature factors 

known so far from the literature the appearance of 
B~,1 terms is not expected. There is, however, a refine- 
ment procedure proposed by Yamamoto where such 
terms (and also higher-order harmonics) are taken 
into account. This leads to a considerable increase of 
the number of parameters to be refined (twelve pa- 
rameters per one harmonic in the general anisotropic 
case). A strict relationship between such a treatment 
of the temperature factors and that discussed above 
is not established yet and would require further 
investigation. 

6. Comments ° 

There are generally two trends among crystallog- 
raphers when dealing with modulated structure 

* The Appendix has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 42172 
(5 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH1 2HU, England. 
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analysis. The first is to apply the three-dimensional 
symmetry for basic or average structure and to 
develop a model SFF, usually simplified, based on 
extra periodic parameters, without definite solution 
of the symmetry problems [eventually reducing the 
problem to that of the superstructure, see e.g. B/Shm 
(1975), Shiozaki (1971) and Schulz (1974)]. The 
second approach is based on the development of the 
(3 + d)-dimensional space-group theory (Yamamoto, 
1983). This makes it possible to refine the modulated 
structure in an analogous way to that of normal 
structure, but at the cost of a more complicated form 
of SFF, which requires numerical integration. In addi- 
tion, one has to face ambiguity when dealing with 
the temperature factors. The present study shows that 
the (3+l)-dimensional symmetry approach to the 
structure refinement can be simplified in many cases 
important in practice. 

The analytical form of the SFF has been presented 
for harmonic approximation with arbitrarily oriented 
amplitudes (e.g. elliptic waves), small displacive 
amplitudes, the corresponding mixed displacive and 
occupational modulations and for the temperature 
factors in a new form able to describe the thermal 
vibrations in the case of elliptic displacive harmonic 
waves. The temperature-factor corrections obtained 
are in keeping with corrections by Axe based on 
physical assumptions. We have shown that these cor- 
rections correspond to the zero- and second-order 

temperature-factor harmonics among those intro- 
duced by Yamamoto. 

The results of this paper have been used to prepare 
a set of least-squares-refinement-type programs to 
refine the modulated structures. These programs have 
been successfully applied in the refinement of the 
modulated phase of NaNO2. 

The authors are greatly indebted to Professor K. 
Lukaszewicz for stimulating discussion and valuable 
comments. 
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Abstract 
Two basic models of the incommensurate (IC) struc- 
ture of NAN02, one with purely occupational modu- 
lation and one with mixed modulation, have been 
tested using (3+ 1)-dimensional space groups. The 
refinements were performed in the two superspace 
groups p1 ~ ~, ~, and P~ ss2 ,, ~,. The main feature of this 
IC structure is the presence of the weak displacive 
waves superposed on the main modulating waves of 
the occupational type. The displacements of atoms 
take place only along the b axis. The amplitude of 
the displacive wave of the Na ÷ ion was found to be 
almost twice as large (0.077/~) as that of the NO~ 
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molecule (0.042 A) with the occupational amplitudes 
approximately the same. The best refinement yields 
an overall R factor of 0.063 in the _P Iz"~'ss group, 
revealing a small phase shift between individual 
waves of the Na ÷ ion and the NO~- molecule. There 
are, however, practically no phase shifts between the 
two kinds of modulation waves involved. All waves 
were found to be harmonic. 

Introduction 
The structure of the antiferroelectric (AF) phase of 
NaNO2 was refined by Kucharczyk, Pietraszko & 
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